Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Health Secur ; 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2326708

ABSTRACT

Drug repurposing can quickly and cost-effectively identify medical countermeasures against pathogens with pandemic potential and could be used as a down-selection method for selecting US Food and Drug Administration-approved drugs to test in clinical trials. We compared results from 15 high-throughput in vitro screening efforts that tested approved and clinically evaluated drugs for activity against SARS-CoV-2 replication. From the 15 studies, 304 drugs were identified as displaying the highest level of confidence from the individual screens. Of those 304 drugs, 30 were identified in 2 or more screens, while only 3 drugs (apilimod, tetrandrine, and salinomycin) were identified in 4 screens. The lack of concordance in high-confidence hits and variations in protocols makes it challenging to use the collective data as down-selection criteria for identifying repurposing candidates to move into a clinical trial.

2.
Cell Rep ; 35(1): 108940, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1157178

ABSTRACT

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , DNA Damage , Isoxazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/physiology , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/metabolism , COVID-19/pathology , Chlorocebus aethiops , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Middle East Respiratory Syndrome Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL